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We study the dynamics of the entanglement structure of a multipartite system experiencing a dissipative
evolution. We characterize the processes leading to a particular form of output-system entanglement and provide a
recipe for their identification via concatenations of particular linear maps with entanglement-breaking operations.
We illustrate the applicability of our approach by considering local and global depolarizing noises acting on
general multiqubit states. A difference in the typical entanglement behavior of systems subjected to these noises
is observed: the originally genuine entanglement dissociates by splitting off particles one by one in the case of
local noise, whereas intermediate stages of entanglement clustering are present in the case of global noise. We also
analyze the definitive phase of evolution when the annihilation of the entanglement compound finally takes place.
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I. INTRODUCTION

The physical phenomenon of entanglement naturally ap-
pears in composite quantum systems via interactions among
constituents. Simple collision models already teach us that
different interaction types lead to various types of multi-
partite entanglement [1]. Systems with local Hamiltonians
exhibit correlations between the degree of entanglement and
eigenenergies [2,3], phase transitions [4–6], and the number
of interacting bodies [7]. Multipartite entanglement finds uses
in quantum networking applications such as secret sharing [8],
secret voting [9], open-destination teleportation [10], etc. For
the latter purposes, entanglement can be created within the
system not only by interaction among constituent bodies but
also by a properly engineered interaction with the environment
[11–13].

Suppose the prepared multipartite entangled state is in-
tended for use in an entanglement-enabled quantum protocol
involving remote clients. While transferring the quantum infor-
mation to recipients, the state will be modified by inevitable
noise processes. It can happen that the type of multipartite
entanglement received by the clients differs significantly from
the original one, and the realization of the desired protocol
becomes impossible. Similarly, uncontrollable noise processes
in quantum memory devices can result in destroying particular
correlations within the stored multipartite system and make the
released state ineffective [14,15]. Degradation of entanglement
also imposes limitations on the benefit of advanced quantum
metrology relying on genuinely multipartite entangled states
[16]. These examples demonstrate the necessity of tracking the
multipartite entanglement dynamics and finding noise levels
corresponding to the change of entanglement type.

Previous efforts in this direction relied on specific en-
tanglement measures. Negativity [17]—a measure detecting

negativity of the density matrix under partial transpose (NPT)
[18]—was originally used by Simon and Kempe [19] and
Dür and Briegel [20] to analyze Greenberger-Horne-Zeilinger
(GHZ), W, and cluster states under local depolarizing noise.
Then Bandyopadhyay and Lidar [21] and Hein et al. [22]
utilized it to study the behavior of GHZ states and graph
states, respectively, under general local homogeneous noise.
Generalized GHZ-type states under a local amplitude-damping
channel were considered with the help of negativity by Man
et al. [23]. Aolita et al. exploited negativity to study effects
of local depolarizing, dephasing, and generalized amplitude-
damping channels in GHZ states [24] and graph states [25].
Those results were obtained for an arbitrary number of qubits
(except for some graph states [25] and randomly sampled states
[26]) due to the ultimate simplicity of negativity computation.
Depolarization and dephasing of qudit GHZ states were
considered via negativity in [27]. Similarly, concatenated
GHZ states (where blocks of a small number of qubits are
GHZ states themselves) were considered in [28]. However,
the negativity does not provide comprehensive information
about the entanglement structure because it can be sensitive to
the entanglement with respect to a particular bipartition only
[remember, e.g., bound-entangled positive partial transpose
states [29] and biseparable but nontriseparable states [30]].

The absence of full separability can also be detected by
some other measures. For instance, Carvalho et al. used the
lower bound for a specific generalization of the concurrence
and applied it to the dynamics of several-qubit GHZ and W
states under amplitude-damping and dephasing local channels
[31]. Gühne et al. used the geometric measure of entanglement
[32,33] to study the global dephasing process of four-qubit
GHZ, cluster, W, and Dicke states [34]. Grimsmo et al. used
the entropic measure for average n-partite entanglement over
quantum trajectories [35]. Gheorghiu and Gour developed the
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evolution of an averaged SL-invariant entanglement measure
for local decoherence [36]. A similar approach with a lower
bound of the concurrence was exploited in [37]. A nonzero
value of these quantities indicates the presence of some
entanglement within the quantum system, but gives little infor-
mation about its particular form and, therefore, the benefit of
this entanglement for some applications remains questionable.
Moreover, vanishing values of the above measures cannot
guarantee the full separability of the state, and thus, the
problem of fundamental noise limits eliminating any form of
entanglement (resulting in fully separable states) is still open.

Genuine multipartite entanglement is the exact opposite
of full separability: this form of entanglement is intrinsically
multiparticle and cannot be attributed to the entanglement
distributed among smaller subsystems. The detection of
genuine entanglement for specific quantum states has been
a subject of intensive recent research (see, e.g., [38–43]
and references therein). Dissipative evolution of genuine
multipartite entanglement has been analyzed with the help of
some measures. The mean value of a projectorlike witness
[44] was used by Bodoky et al. to study several qubits
within a heuristic model of decoherence based on local
relaxation and dephasing times [45]. Campbell et al. used
fidelity- and collective-spin-based entanglement witnesses to
analyze the dynamics of genuine multipartite entanglement of
Dicke states under local amplitude-damping, phase-damping,
and depolarizing channels [46]. Tripartite negativity and
generalized concurrence were also applied to the dissipative
dynamics of GHZ and W three-qubit entangled states [47–52].
Let us recall that the above measures are not precise, i.e.,
their zero values do not imply in general that the genuine
entanglement is lost. On the other hand, precise measures
(based on convex roof definitions) are quite hard to compute.
This is the main reason why the research in entanglement
dynamics is usually restricted to particular initial states (GHZ,
W, X, Dicke, etc.) and the use of relatively simple measures.

Despite existing results for noises preserving genuine
entanglement and entanglement on the whole (absence of
full separability), the evolution of entanglement structure still
remains unexplored. The aim of this paper is to track the
transformations of entanglement structure during dissipative
processes. By “structure” we understand the number of
separate components and the number of particles within each
of them (with allowance for convex mixtures) [7,53,54]. This
structure resembles a Russian nested doll, and dissipative
evolution maps states from the outer to the inner dolls.
The evolution of entanglement structure can be seen as a
dissociation of the entanglement compound due to interaction
with the “solvent” (particles of the environment). Note that
the “entanglement compound” refers to a genuinely entangled
multipartite component and differs from the concept of an
“entanglement molecule” whose bonds depict entanglement
of reduced two-particle states [55]. The idea of tracking the
entanglement structure was realized for three-qubit GHZ states
under global depolarization in [56] and for the restricted
Hilbert space of single-excitation states in [57]. We do not
restrict ourselves to particular input states and develop a theory
of transformations that map any initial state into a chosen
doll. Note that mainstream research is focused on showing
that a particular state is outside a given doll (mostly that of

biseparable states) [7,38–43,54], whereas ours ensures the
opposite and matches the recent approach of Ref. [58]. Our
methodology relies on a neat decomposition of the physical
map into simpler (but not necessary physical) processes
involving entanglement-breaking operations [59]. The criteria
obtained are formulated for general quantum channels.

To illustrate our approach, we discuss examples of local and
global depolarizing noises modeling individual and common
baths, respectively. Local depolarizing noises are relevant in
quantum communication tasks (exploiting, e.g., optical fibers)
as well as in purely physical systems such as nuclear spins in
molecules [60]. Global depolarizing noise is an appropriate
model in experiments where full-rank quantum states are
detected [61,62] and is argued to be the worst-case scenario
of system-environment interactions [63]. We find the noise
levels of corresponding entanglement structure dissociations
and reveal differences in the typical dissociation behavior
between local and global noises.

The paper is organized as follows. In Sec. II, we precisely
describe the multipartite entanglement formalism used, with
attention being paid to higher-order partitions (tripartitions,
tetrapartitions, etc.) which are often omitted from consid-
eration. In Sec. III, we recall the necessary information
about general and local quantum channels. In Sec. IV, the
problem under investigation (the dynamics of entanglement
structure) is precisely formulated. In Sec. V, we accomplish
the development of the methodology and derive the criteria
of entanglement dissociation and annihilation. In Sec. VI,
we provide a recipe for applying the obtained criteria to the
above-mentioned noises. In Sec. VII, the physical meaning of
the results is discussed. In Sec. VIII, we concisely summarize
the ideas, methods, and achieved results.

II. MULTIPARTITE ENTANGLEMENT FORMALISM

To express the idea of entanglement structure quantitatively,
one can make use of the following formalism. Whenever we
speak about entanglement, we imply a particular partition of
the composite system. In general, an N -body system ABC . . .

can be partitioned into k subsystems, where k ranges from 2 to
N . If the system is not partitioned at all, we will reckon k = 1.
One can divide the N -body system ABC . . . into k subsystems
(also referred to as parties) in {N

k
} different ways, where

{N

k
} = 1

k!

∑k
m=0(−1)m( k

m
)(k − m)N is the Stirling number of

the second kind. Denote by Pk a set of possible partitions
into k parties. Partitions are ordered in such a way that the
parts with fewer bodies go first. Then, for a three-body system
ABC we have P1(ABC) = {ABC}, P2(ABC) = {A|BC,

B|AC,C|AB}, and P3(ABC) = {A|B|C}. In the case of a
four-body system ABCD, the sets of possible partitions are
P1(ABCD) = {ABCD}, P2(ABCD) = {A|BCD,B|ACD,

C|ABD,D|ABC,AB|CD,AC|BD,AD|BC}, P3(ABCD) =
{A|B|CD,A|C|BD,A|D|BC,B|C|AD,B|D|AC,C|D|AB},
and P4(ABCD) = {A|B|C|D}. Denote by Pk

j the j th
partition of the set Pk , e.g., P3

5 (ABCD) = B|D|AC. In order
to address the mth subsystem of the partition Pk

j , we will use
the notation [Pk

j ]m, e.g., [P3
5 (ABCD)]2 = D.

Quantum states of the system ABC . . . are described by
density operators �ABC... (positive and with unit trace) acting
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on the Hilbert space HABC... ≡ HA ⊗ HB ⊗ HC ⊗ · · · and
all together forming the convex set S(HABC...). A state � is
called separable with respect to a particular partition Pk

j if

the resolution � = ∑
i μi�

[Pk
j ]1

i ⊗ · · · ⊗ �
[Pk

j ]k
i holds true for

some probability distribution {μi} and density operators �
[Pk

j ]m
i ,

m = 1, . . . ,k. We will denote such a separable state as σ k
j for

brevity. If � �= σ k
j for any σ k

j , then � is said to be entangled
with respect to the partition Pk

j .
The above consideration of partitions is important because

the physics of multipartite entanglement can be quite
counterintuitive. For instance, the three-qubit state of Refs.
[30,64] is separable with respect to any bipartition P2

j but is
entangled with respect to tripartition P3. Another example
is a four-qubit Smolin state [65] which is separable with
respect to bipartitions P2

5 ,P2
6 ,P2

7 and is entangled with
respect to bipartitions P2

1 ,P2
2 ,P2

3 ,P2
4 , any tripartition P3

j , and
quartering P4.

Now we can define the concept of k-separability of a
quantum state, which indicates that the state can accommodate
components each of which has k separate parties. Namely, the
state � is called k-separable and denoted �k-sep if it adopts the

resolution
∑{ N

k
}

j=1 pk
jσ

k
j for some probability distribution {pk

j }j
and separable density operators σ k

j . Note that �k-sep can still be

entangled with respect to partitions Pk
j if {N

k
} > 1. Clearly, if

the state is k-separable, then it is also (k − 1)-separable, which
implies the inclusion relation SN-sep ⊂ · · · ⊂ S2-sep ⊂ S1-sep

for convex sets of k-separable states. A natural measure of
separability appears:

Ksep[�] := max
�=�k-sep

k. (1)

If Ksep[�] = 1, then the state � is called genuinely entangled.
If Ksep[�] = N , then the state � is fully separable.

One can quantify multipartite entanglement in an alternative
way by counting the number of bodies that are actually
entangled [7,54,66,67]. This number would indicate the
resources needed to create the state. For instance, the state
�AB ⊗ �CDE of a five-body system ABCDE is 2-separable
but comprises a party CDE which can be genuinely entangled
(Ksep[�CDE] = 1), i.e., requires three bodies to be entangled.
To embody this idea in a precise manner, we introduce the
following definition of resource intensiveness (compatible
with the concepts of entanglement depth [68] and producibility
[69]):

Rent[�] := min
�=∑N

k=1

∑{ N
k }

j=1 pk
j σ

k
j

max
m=1,...,k

#
{[
Pk

j

]
m

}
, (2)

where #{[Pk
j ]m} is the number of bodies within the mth

subsystem of the partition Pk
j .

Denote by Sr-ent = {� : Rent[�] � r} the convex set of
r-entangled states. Obviously, S1-ent ⊂ S2-ent ⊂ · · · ⊂ SN-ent.
Importantly, S1-ent = SN-sep, S(N−1)-ent = S2-sep, and SN-ent =
S1-sep = S(HABC...). Depending on the quantum state, the
range of Rent can be � N

Ksep
,N − Ksep + 1] for a fixed Ksep,

and the range of Ksep can be � N
Rent

,N − Rent + 1] for a fixed

2-sep

FS

GE

3-ent2-ent

3-sep

4-ent

1-sep

4-sep

1-ent

FIG. 1. (Color online) Schematic of sets Sk-sep (dashed) and Sr-ent

(solid) for a four-body system.

Rent.1 The relations between two families of sets {Sk-sep} and
{Sr-ent} for a four-body system are shown in Fig. 1.

III. QUANTUM DYNAMICS

We describe the physical evolution of open quantum
systems by the input-output formalism of quantum channels:
�out = �[�in], where � : T (Hin) → T (Hout) is a completely
positive trace-preserving (CPT) linear map on trace-class
operators T (Hin). The physical meaning of the evolution
via a CPT map � can be readily seen from the Stinespring
dilation [70]: �[�in] ≡ trenv[U (�in ⊗ ξenv)U †] for some state
of the environment ξenv and some unitary operator U ∈
T (Hin ⊗ Henv). Complete positivity (CP) of the map � acting
on a system S guarantees that (�S ⊗ Idanc)[�S+anc] � 0 for
all composite states �S+anc ∈ S(HS+anc) of the system S and
an arbitrary ancilla, with Id being the identity transformation.
Equivalently, the map � is CP if it adopts the diagonal sum
representation �[X] = ∑

k AkXA
†
k . If the Kraus operators

Ak : Hin 	→ Hout satisfy
∑

k A
†
kAk = Iin (identity operator),

then � is CPT.
In order to define a linear map � acting on a system S, we

will use the Choi-Jamiołkowski isomorphism [71,72]:

�SS ′
� := (�S ⊗ IdS ′

)[|�SS ′
+ 〉〈�SS ′

+ |], (3)

�[X] = dS trS ′
[
�SS ′

�

(
I S

out ⊗ XT
)]

, (4)

where d = dimH, |�SS ′
+ 〉 = (dS)−1/2 ∑dS

i=1 |i ⊗ i ′〉 is a max-
imally entangled state shared by system S and its clone
S ′, XT = ∑

i,j 〈j |X|i〉|i ′〉〈j ′| ∈ T (HS ′
in ) is the transposition in

some orthonormal basis, and trS ′ denotes the partial trace over
S ′. The linear map �S is CP if and only if �SS ′

� � 0.
Since our main interest is focused on many-body sys-

tems, let us consider a composite system S = ABC . . .

acted upon by some channel �S . To begin with,
|�SS ′

+ 〉 = (dAdBdC · · · )−1/2 ∑dA

i=1

∑dB

j=1

∑dC

k=1

∑
··· |ijk · · · 〉

1Hereafter, �x denotes the smallest integer greater than or equal to
x, and �x� denotes the greatest integer less than or equal to x.
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FIG. 2. (Color online) Local channels: (a) general; (b) homo-
geneous.

⊗ |i ′j ′k′ · · · 〉 = |�AA′
+ 〉 ⊗ |�BB ′

+ 〉 ⊗ |�CC ′
+ 〉 ⊗ · · · , which ex-

plicitly shows the separability of the maximally entangled
state with respect to the partition AA′|BB ′|CC ′| . . . . While
constructing the Choi operator (3), the map �ABC... can in
general entangle these subsystems.

Suppose a local channel �A
1 ⊗ �B

2 ⊗ �C
3 ⊗ · · · which

serves as an adequate model in situations when each particle
is sent to a corresponding receiver through an individual
quantum cable [Fig. 2(a)]. In this case, �ABC...A′B ′C ′...

�1⊗�2⊗�3⊗··· =
�AA′

�1
⊗ �BB ′

�2
⊗ �CC ′

�3
⊗ · · · . Clearly, �A

1 ⊗ �B
2 ⊗ �C

3 ⊗ · · ·
is CP if and only if each of the maps �A

1 , �B
2 , �C

3 , . . .
is CP.

In quantum communication, the typical scenario is to use
a single quantum cable to transmit time-separated parties of a
multipartite state from the encoder to the decoder [Fig. 2(b)].
Neglecting the memory effects, the evolution of a multipartite
system is governed by the homogeneous local channel �⊗N ,
which also appears in the definition of channel capacities (see,
e.g., the review [73]).

IV. PROBLEM FORMULATION

Consider a composite N -body system S = ABC . . . that
undergoes the physical evolution �out = �[�in] determined
by some CPT map � (we also assume HS

in = HS
out). If

�out is separable with respect to the partition Pk
j (i.e.,

�out = σ k
j ), then we say that the channel � dissociates the

entanglement compound of a given �in into smaller compounds
of [Pk

j ]1, . . . ,[Pk
j ]k and denote by Dk

j (�in) the set of such
channels. If the channel � dissociates the entanglement of all
input states �in ∈ S(HS) in this way, then we will refer to �

as dissociating entanglement with respect to the partition Pk
j

and denote � ∈ Dk
j ≡ ⋂

�in∈S(HS ) Dk
j (�in).

Using entanglement measures (1) and (2), we can quan-
titatively describe the processes of entanglement structure
dynamics. Namely, denote kSep(�in) a set of channels �

such that Ksep[�[�in]] � k. By construction, kSep(�in) is
a convex hull of the sets Dk

j (�in). Similarly, rEnt(�in) is
a set of channels � such that Rent[�[�in]] � r . Regarding
state-independent properties, we straightforwardly introduce
the sets of channels kSep := ⋂

�in∈S(HS ) kSep(�in) and rEnt :=⋂
�in∈S(HS ) rEnt(�in). The developed formalism of Sec. II

immediately results in the following inclusion diagram for

the above sets:

NSep ⊂ (N − 1)Sep ⊂ · · · ⊂ 2Sep ⊂ 1Sep
‖ ‖ ‖

1Ent ⊂ 2Ent ⊂ · · · ⊂ (N − 1)Ent ⊂ NEnt
‖ ‖ ‖

EA DGE CPT.

We have used a special notation for two distinctive classes
of channels:

(a) entanglement annihilating (EA) channels transforming
any input state into a fully separable one [74];

(b) channels that dissociate genuine entanglement (DGE),
thus transforming genuinely entangled states into nongen-
uinely entangled ones.

The problem under investigation is twofold: (i) to char-
acterize the sets of channels kSep(�in) and rEnt(�in) as well
as state-independent sets from the above diagram, and (ii)
to track how exactly the multiparticle entanglement structure
dissociates under particular noises. Our special attention is
paid to EA and DGE channels.

Before proceeding to the derivation of criteria, we need
to clarify the relation between the problem involved and the
well-known approaches developed so far. Consider a (not
necessarily composite) system S acted upon by a channel
� : T (HS

in) 	→ T (HS
out). If the Choi operator �SS ′

� is separable
with respect to the partition S|S ′, then � is a so-called
entanglement-breaking (EB) map [59,75], whose peculiarity
is that (�S ⊗ Idanc)[�S+anc] is separable with respect to the
partition S|anc for all density operators �S+anc ∈ S(HS+anc).
In fact, separability of �SS ′

� implies that � has the Holevo form
�[X] = ∑

k tr[FkX]ωk , where {Fk} is a positive operator-
valued measure and ωk ∈ S(Hout), i.e., � is a measure-and-
prepare procedure. The latter representation, in its turn, implies
[59] that there exists a diagonal sum representation with
rank-1 Kraus operators Ak ∝ |ϕk〉〈ψk| with |ψk〉 ∈ HS

in and
|ϕk〉 ∈ HS

out.
As concerns a composite system S = ABC . . . , the EB

channel �S disentangles S from any other system but can
in principle result in any entanglement dynamics within S

(among A, B, C, . . .). For instance, the output state can
be genuinely entangled or fully separable depending on the
entanglement of vectors |ϕk〉 constituting Kraus operators.
However, the local channel �S = �A

1 ⊗ �B
2 ⊗ �C

3 ⊗ · · · is
entanglement breaking if and only if each of the channels
�A

1 , �B
2 , �C

3 , . . . is entanglement breaking. This can be
readily seen from the requirement of separability of the Choi
operator �ABC...A′B ′C ′...

�1⊗�2⊗�3⊗··· = �AA′
�1

⊗ �BB ′
�2

⊗ �CC ′
�3

⊗ · · · with
respect to the partition ABC . . . |A′B ′C ′ . . . . Thus, the local
entanglement-breaking channel is automatically entanglement
annihilating but the converse is not true. These and other dif-
ferences between entanglement-breaking and entanglement-
annihilating channels are discussed in [74,76,77].

V. METHODOLOGY AND CRITERIA

In this section, we provide criteria to detect the different
kinds of entanglement dissociation discussed above. We start
with a description of our methodology which is based on an
extensive use of various convex sets of operators and maps.
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(a) (b) (c) (d) (e)

A

B

C

D

E

F

FIG. 3. (Color online) Elementary blocks of entanglement dissociation for the six-body system ABCDEF constructed via concatenation
of a linear Hermitian map � and measure-and-prepare (EB) operations. Semicircles and triangles depict projections onto |ψn〉 and preparations
of |ϕn〉 of Kraus operators An ∝ |ϕn〉〈ψn|, respectively, and double lines depict the classical information transfer. Only one restriction is
imposed: �[�in] becomes positive semidefinite after performing the “measure” part of EB operations (red dotted compound). Partitions: (a)
A|B|C|D|E|F , (b) AB|CD|EF , (c) A|B|C|DEF , (d) ABC|DEF , and (e) A|BCDEF .

In addition to quantum states described by positive semidef-
inite unit-trace operators � ∈ S(HABC...), an important role
will be played by block-positive operators [72]. The operator
ξk
j is called block positive with respect to the partition Pk

j if it
satisfies〈

ψ
[Pk

j ]1

1 ⊗ · · · ⊗ ψ
[Pk

j ]k
k

∣∣∣ξk
j

∣∣∣ψ [Pk
j ]1

1 ⊗ · · · ⊗ ψ
[Pk

j ]k
k

〉
� 0

for all vectors ψ1, . . . ,ψk . Block-positive operators are closely
related to entanglement witnesses [78,79] and can be used
to determine separability: a state � ∈ S(HABC...) is separable
with respect to the partition Pk

j if and only if tr[�ξk
j ] � 0 for

all block-positive operators ξk
j .

We must emphasize that the concepts of entanglement
dissociation and annihilation from Sec. IV do not imply
any ancillary system besides the multipartite system S =
ABC . . . itself. This allows the CPT condition of the physical
transformation � to be relaxed. We consider an extended
set E[�] of (mathematical) linear maps ϒ having the same
entanglement behavior as � on the corresponding domain
of input states. For example, the extended set E[Dk

j (�in)]
consists of linear maps ϒ satisfying the only restriction
that ϒ[�in] is equal to some σ k

j . Similarly, E[kSep(�in)]
and E[rEnt(�in)] denote the extensions of sets kSep(�in) and
rEnt(�in), respectively. As we show later, the extensions turn
out to be useful because they adopt a good characterization.
The original set of maps can be found by intersecting with
CPT maps, e.g., Dk

j (�in) = CPT ∩ E[Dk
j (�in)].

Proposition 1. Suppose a linear map ϒ acting on a
system ABC . . . . Then ϒ ∈ E[Dk

j (�in)] if and only if

tr{�ABC...A′B ′C ′...
ϒ [(ξk

j )ABC... ⊗ (�T
in)A

′B ′C ′...]} � 0 for all ξk
j .

Proof. Separability of ϒ[�in] with respect to the partition
Pk

j is equivalent to the inequality tr(ϒ[�in]ξk
j ) � 0 for all ξk

j .
Substituting (4) for ϒ[�in] concludes the proof. �

As a result, the cone E[Dk
j (�in)] is dual to the cone of

maps ϒ◦[X] = ξk
j tr[�inX]. As concerns the state-independent

property Dk
j , the map ϒ belongs to the set Dk

j if its Choi

matrix satisfies tr{�ABC...A′B ′C ′...
ϒ [(ξk

j )ABC... ⊗ �A′B ′C ′...]} � 0

for all ξk
j and �A′B ′C ′....

The criterion provided by Proposition 1 is not quite
operational. To overcome this obstacle we derive sufficient
criteria of entanglement dissociation.

Consider a particular partition Pk
j . Suppose a linear map

� : T (Hin) 	→ T (Hin) which transforms the density operator
�in into some Hermitian (but not necessarily positive) operator
�[�in] such that〈

ψ
[Pk

j ]1

1 ⊗ · · · ⊗ ψ
[Pk

j ]m−1

m−1 ⊗ I ⊗ ψ
[Pk

j ]m+1

m+1 ⊗ · · · ⊗ ψ
[Pk

j ]k
k

∣∣∣
×�[�in]

∣∣∣ψ [Pk
j ]1

1 ⊗ · · · ⊗ ψ
[Pk

j ]m−1

m−1 ⊗ I ⊗ ψ
[Pk

j ]m+1

m+1

⊗ · · · ⊗ ψ
[Pk

j ]k
k

〉
� 0 (5)

is fulfilled for some vectors ψ1, . . . ,ψm−1,ψm+1, . . . ,ψk , i.e.,
�[�in] after projection onto these vectors becomes a positive
operator from the cone S(H[Pk

j ]m ). If this is the case, then
for rank-1 Kraus operators An ∝ |ϕn〉〈ψn| with arbitrary
|ϕn〉, the operator (A1 ⊗ · · · ⊗ Am−1 ⊗ I ⊗ Am+1 ⊗ · · ·
⊗ Ak)�[�in](A†

1 ⊗ · · · ⊗ A
†
m−1 ⊗ I ⊗ A

†
m+1 ⊗ · · · ⊗ A

†
k) be-

longs to a cone of separable states σ k
j .

Thus, we obtain the following sufficient criterion of
entanglement dissociation.

Proposition 2. Concatenation of a linear Hermitian map

� and a (k − 1)-partite EB operation (O[Pk
j ]1

EB ⊗ · · · ⊗ Id[Pk
j ]m

⊗ · · · ⊗ O[Pk
j ]k

EB ) belongs to E[Dk
j (�in)] if �[�in] becomes

positive after projection on right-singular vectors of the rank-1
Kraus operators of the EB operation.

The idea of Proposition 2 is shown for a six-body system in
Fig. 3. The benefit of the constructed concatenation is that the
map � does not have to be positive2 (in contrast to Ref. [77]),
which makes the set E[Dk

j (�in)] even larger.
When all possible states �in are considered, the satisfaction

of requirement (5) becomes equivalent to the positivity of

the map (O[Pk
j ]1

EB ⊗ · · · ⊗ Id[Pk
j ]m ⊗ · · · ⊗ O[Pk

j ]k
EB ) ◦ �. This map

is automatically positive if � transforms density operators
into block-positive operators ξk

j , which in turn is equivalent
to the fact that its Choi operator is block positive of the form
�ABC...A′B ′C ′...

� = ξPk
j (ABC...)|A′B ′C ′....

2A linear map is called positive if it maps positive operators into
positive ones.
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TABLE I. Local depolarizing N -qubit channel �local
q : ranges of parameter q, for which the various entanglement-dissociative behaviors are

detected (within the interval [−1/3,1]).

N �in EA N

2 Sep
⋂

2Ent ( N

2 +1)Sep
⋂

N

2 Ent 2Sep
⋂

N

2 Ent (N−1)Ent=DGE Not DGE NPT(1,N−1) NPT( N

2 , N

2 )

3 |GHZ〉 �0.490 �0.713 >0.716a,b >0.557
|W 〉 �0.485 �0.686 >0.772a >0.576
�UPB �0.698 �0.852 ∅ ∅

All �0.477 �0.650

4 |GHZ〉 �0.453 �0.548 �0.553 �0.548 �0.751 >0.781a,b >0.578 >0.512
|W 〉 �0.447 �0.473 �0.581 �0.473 �0.756 >0.842a >0.585 >0.548
|Cl〉 �0.444 �0.478 �0.574 �0.478 �0.742 >0.774a >0.532 >0.550
All �0.444 �0.472 �0.550 �0.472 �0.715

6 |GHZ〉 �0.414 �0.433 �0.591 �0.530 �0.826 >0.850b >0.638 >0.490

aComputation via the method of Ref. [41].
bComputation via the method of Ref. [54].

Corollary 1. If �ABC...A′B ′C ′...
� is block positive with respect

to the partitionPk
j (ABC . . .)|A′B ′C ′ . . . , then (O[Pk

j ]1

EB ⊗ · · · ⊗
Id[Pk

j ]m ⊗ · · · ⊗ O[Pk
j ]k

EB ) ◦ � ∈ Dk
j for arbitrary EB operations.

The sets E[kSep(�in)] and E[rEnt(�in)] are nothing else
but appropriate convex hulls of sets E[Dk

j (�in)] which can be
detected by Proposition 2. Let us remember, however, that we
are interested in characterizing sets kSep(�in) and rEnt(�in) of
physical (CPT) maps. Since the map � under investigation is
originally CPT, its decomposition into mathematical maps of
the above propositions does not change this fact but ensures
that it belongs to a desired set of maps. Therefore, we have the
following statement.

Proposition 3. Suppose a quantum channel � can be decom-
posed into the sum � = ∑

Pk
j ∈P Mk

j , where each elementary

map Mk
j ∈ E[Dk

j (�in)] is constructed via Proposition 2. If P is
a subset of partitions contributing to k-separable or r-entangled
states, then � belongs to kSep(�in) or rEnt(�in), respectively.

Similarly, to detect maps from the state-independent
sets kSep and rEnt one can use Corollary 1 instead of
Proposition 2 in the statement of Proposition 3.

VI. APPLICABILITY OF CRITERIA
TO DEPOLARIZING CHANNELS

The sufficient criterion to detect kSep(�in) and rEnt(�in)
channels, Proposition 3, implies the existence of the specific
decomposition of the channel of interest, �. In this section,
we provide a recipe for construction of such a decomposition
for relatively simple one-parametric families of channels �.
Although we do not raise the question of optimality, our
findings enable us to reveal features of the entanglement
structure dynamics.

A general depolarizing map � : T (Hd ) 	→ T (Hd ) is
given by the formula � = qId + (1 − q)Tr, where Tr[X] =
tr[X] 1

d
Id is the tracing map. The map � represents a valid

channel (CPT map) if q ∈ [−(d2 − 1)−1,1]. Let us consider
two one-parametric families of channels acting on N qubits:
the local depolarizing noise �local

q ≡ �⊗N
q , where �q is a

single-qubit map (d = 2), and the global depolarizing noise
�

global
q (d = 2N ). Our goal is the following: for fixed k and

r , find the region of parameter q such that the channel �local
q

(or �
global
q ) surely adopts the decomposition into elementary

blocks constituting kSep ∩ rEnt.
In what follows, we do not restrict the number of qubits N

but, in view of the enormous number of possible partitions,
we consider the most interesting cases. All of them represent
channels dissociating genuine entanglement but correspond to
various structures of output states:

(a) k = N and r = 1; the output state is fully separable
(EA channels).

(b) k = N
2 and r = 2; the output-state entanglement mixture

is composed of pairs of entangled particles.
(c) k = N

2 + 1 and r = N
2 ; the biggest clusters in the

output-state entanglement mixture cannot contain more than N
2

particles, with the remaining N
2 particles being disentangled.

(d) k = 2 and r = N
2 ; the output-state entanglement con-

tains mixtures of two or more clusters of maximum size N
2 .

(e) k = 2 and r = N − 1; at least one particle is separated
from entanglement compounds in the output-state entangle-
ment mixture (the biggest subset of DGE channels).

For N = 6 the elementary blocks of these kinds of channels
are illustrated in Fig. 3.

Since the depolarizing channels under investigation are
permutationally invariant, we also consider all possible permu-
tations of elementary blocks. This is equivalent to relabeling of
particles and, therefore, leads to a simplification of the analysis
of permutationally invariant input states.

To anticipate the results, in Tables I and II we present the
ranges of parameter q for which the depolarizing channels
�local

q and �
global
q , respectively, fall into one of the classes

(a)–(e). Within these ranges, the existence of a corresponding
decomposition in the statement of Proposition 3 can be
shown [we sum up technical details for each class (a)–(e)
in the forthcoming sections of the same label]. The column
“Not DGE” in Tables I and II is based on detection of
geunine entanglement according to Refs. [41,54]. The last
two columns in Tables I and II are based on the conventional
negativity under partial transpose (NPT) entanglement crite-
rion for most asymmetric bipartitions (one body vs N − 1
bodies) and symmetric bipartition ( N

2 bodies vs N
2 bodies). In

the following Secs. VI A–VI E, we present algebra leading
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TABLE II. Global depolarizing N -qubit channel �
global
q : ranges of parameter q for which the various entanglement-dissociative behaviors

are detected (within the interval [−(22N − 1)−1,1]).

N �in EA N

2 Sep
⋂

2Ent ( N

2 +1)Sep
⋂

N

2 Ent 2Sep
⋂

N

2 Ent (N−1)Ent=DGE Not DGE NPT(1,N−1) NPT( N

2 , N

2 )

3 |GHZ〉 �0.147 �0.402 >0.429a,b >0.200
|W 〉 �0.125 �0.317 >0.479a >0.210
�UPB �0.400 �0.690 ∅ ∅

All �0.111 �0.289

4 |GHZ〉 �0.062 �0.202 �0.111 �0.202 �0.262 >0.467a,b >0.112 >0.112
|W 〉 �0.048 �0.123 �0.124 �0.123 �0.256 >0.474a >0.127 >0.112
|Cl〉 �0.052 �0.123 �0.109 �0.123 �0.229 >0.385a >0.112 >0.112
All �0.047 �0.121 �0.107 �0.121 �0.184

6 |GHZ〉 �0.011 �0.034 �0.032 �0.046 �0.131 >0.493b >0.031 >0.031

aComputation via the method of Ref. [41].
bComputation via the method of Ref. [54].

to the parameters q for the classes of channels (a)–(e)
above.

A. Entanglement-annihilating channels

The elementary block of EA channels is obtained by
applying entanglement-breaking operations on N − 1 particles
[see Fig. 3(a)]. The exact form of EB operations chosen
reads OEBψi

[X] = 1
2 |ψi〉〈ψi |X|ψi〉〈ψi |, where { 1

2 |ψi〉〈ψi |}4
i=1

form a symmetric informationally complete positive operator-
valued measure (SIC-POVM) for qubits (see the explicit
analytical form of the vectors {|ψi〉}4

i=1 in [80]). This choice is
justified by the fact that

∑4
i=1 OEBψi

= �q=1/3. (The same
result would be obtained by using projectors on mutually
unbiased bases [81] instead of SIC-POVM elements; however,
this approach leads to worse results for some input states �in.)
The suggested decomposition reads

� = 1

N

N∑
m=1

(
�

[PN ]1
q=1/3 ⊗ · · · ⊗ Id[PN ]m

⊗ · · · ⊗ �
[PN ]N
q=1/3

)
◦ �a(m), (6)

where m is the index of a particle not subjected to EB
operations. We have taken into account that each �q=1/3

is composed of EB operations OEBψi
and therefore it is

convenient to parametrize the map �a in such a way that the
vectors |ψi〉 are not included in the parametrization directly.
However, the linear map �a(m) should satisfy the requirement
(5) for all choices of vectors |ψit 〉N−1

t=1 from the set {|ψi〉}4
i=1. To

parametrize the map �a(m) we resort to a so-called diagonal
map of the form

�[X] = 1

2N

∑
i1,...,iN =0,...,3

xi1···iN tr[(ςi1 ⊗ · · · ⊗ ςiN )X]

× ςi1 ⊗ · · · ⊗ ςiN , (7)

where ς0 = I2 and ς1,ς2,ς3 are conventional Pauli matrices.
Let #0[i1 · · · iN ] denote the number of zeros in the sequence
i1, . . . ,iN . Consider diagonal maps �a(m) such that the coeffi-
cients {xi1···iN } depend on #0[im] and #0[i1 · · · im−1im+1 · · · iN ]
only, i.e., xi1···iN = fa(#0[im],#0[i1 · · · im−1im+1 · · · iN ]), with

restrictions on the parameters {fa} being imposed by (5). Then
the relation (6) becomes valid if

n

3n−1N
fa(0,N − n) + N − n

3nN
fa(1,N − n − 1)

=
{

qn, � = �local
q ,

q1−δn,0 , � = �
global
q ,

n = 0, . . . ,N, (8)

where δs,t is the conventional Kronecker delta.
For a fixed input state �in, we find the restrictions on the

parameters {fa} given by (5) and then solve the system of
equations (8) numerically. If the system has a solution for some
q̃, then it also has a solution for q < q̃. Solutions (max q̃) are
presented for some interesting states3 �in of N = 3,4,6 qubits
in Tables I and II for local and global noises, respectively. We
also consider the case of all possible input states as follows:
since �a linearly depends on the parameters {fa}, we check
the corresponding block positivity of ��a

(see Corollary 1) for
some number of parameters {fa} and construct a convex hull of
satisfactory parameters; then we solve the system of equations
(8) for {fa} from the convex hull; the maximum value of q for
which the system has a solution is presented in Tables I and II
in the rows “All.”

B. N
2 Sep

⋂
2Ent channels

The output state will be N
2 -separable and 2-entangled if the

channel can be decomposed into elementary transformations
E[DN/2

j (�in)] from Proposition 2, each containing (N
2 − 1)

EB operations OEB on two qubits [see Fig. 3(b)]. As in
the previous section, we choose EB operations of the form
OEBψi

[X] = 1
4 |ψi〉〈ψi |X|ψi〉〈ψi |, where { 1

4 |ψi〉〈ψi |}16
i=1 form

a SIC-POVM in T (H4) (see the explicit analytical form of
the vectors {|ψi〉}16

i=1 in [80]). Then
∑16

i=1 OAB
EBψi

= �AB
q=1/5

3The states of interest are |GHZ〉 = (1/
√

2)(|0〉⊗N + |1〉⊗N ); |W 〉 =
(1/

√
N )(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉); �UPB = (1/4)

(I8 − PUPB), where PUPB is a projector on unextendable product
bases for three qubits [30,64]; |Cl〉 = (1/2)(|0000〉 + |0011〉 +
|1100〉 − |1111〉).
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is a depolarizing map acting on two qubits (A and B) simultaneously. The decomposition of channel � reads

� =
(

N

2

)−1 ∑
PN/2

j ∈P

N/2∑
m=1

(
�

[PN/2
j ]1

q=1/5 ⊗ · · · ⊗ Id[PN/2
j ]m ⊗ · · · ⊗ �

[PN/2
j ]N/2

q=1/5

)
◦ �b(j,m), (9)

where P is a set of N!
2N/2(N/2)! partitions PN/2

j such that #[PN/2
j ]1 = · · · = #[PN/2

j ]N/2 = 2 (two qubits in each party), and the map

�b(j,m) must meet the condition (5) for all choices of vectors |ψit 〉(N/2)−1
t=1 from the set {|ψi〉}16

i=1. Using diagonal maps �b(j,m)
of the form (7) with the parametrization xi1···iN = fb(#0[il il′],#0[i1 · · · il−1il+1 · · · il′−1il′+1 · · · iN ]), (il il′) ∈ [PN/2

j ]m, we obtain
the following system of equations:(

N

2

)−1{(
n

2

)
fb(0,N − n)

5�n/2−1
+ n(N − n)

fb(1,N − n − 1)

5�n/2� +
(

N − n

2

)
fb(2,N − n − 2)

5�n/2

}

=
{

qn, � = �local
q ,

q1−δn,0 , � = �
global
q ,

n = 0, . . . ,N. (10)

The maximal values of q for which the system has a solution compatible with (5) are presented for various input states in
Tables I and II.

C. ( N
2 + 1)Sep

⋂ N
2 Ent channels

The output state will be (N
2 + 1)-separable and N

2 -entangled if the channel can be decomposed into elementary transformations

E[DN/2+1
j (�in)], j = 1, . . . ,( N

N/2 ) [for such j ’s, the N -body system is divided into N
2 single-body parts plus one part comprising

N
2 bodies; see Fig. 3(c)]. To find the decomposition for Proposition 3, we use the single-qubit EB operations OEBψi

, |ψi〉 ∈ H2,
i = 1, . . . ,4, as in Sec. VI A. This yields the following decomposition:

� =
(

N

N/2

)−1 ( N

N/2)∑
j=1

(
�

[PN/2+1
j ]1

q=1/3 ⊗ · · · ⊗ �
[PN/2+1

j ]N/2

q=1/3 ⊗ Id[PN/2+1
j ]N/2+1

)
◦ �c(j ), (11)

where the map �c(j ) must satisfy the requirement (5) for all choices of vectors |ψit 〉N/2
t=1 from the set {|ψi〉}4

i=1 (vectors
corresponding to a SIC-POVM for a qubit). Using diagonal maps �c(j ) of the form (7) with the parametrization
xi1···iN = fc(#0[{i1 · · · iN } \ {il1 · · · ilN/2}],#0[il1 · · · ilN/2 ]), (il1 · · · ilN/2 ) ∈ [PN/2+1

j ]N/2+1, we obtain the following system of
equations: (

N

N/2

)−1 N/2∑
l=0

(
n

N/2 − l

)(
N − n

l

)
fc(l,N − n − l)

3N/2−l
=

{
qn, � = �local

q ,

q1−δn,0 , � = �
global
q ,

n = 0, . . . ,N. (12)

The maximal values of q for which the system has a solution
compatible with (5) are presented for various input states in
Tables I and II.

D. 2Sep
⋂ N

2 Ent channels

The output state will be 2-separable and N
2 -entangled if the

channel can be decomposed into elementary transformations
E[D2

j (�in)], j = {N

2 } − 1
2 ( N

N)/2 ) + 1, . . . ,{N

2 } [this choice of
j ’s corresponds to bipartitions of an N -body system into equal
N
2 -body parts; see Fig. 3(d)]. We use the following EB opera-
tions OEB on N

2 qubits: OEBψi
[X] = 1

2N/2 |ψi〉〈ψi |X|ψi〉〈ψi |,
where {|ψi〉}2N

i=1 is a set of normalized vectors such that
{|ψi〉〈ψi |}2N

i=1 is a set of SIC projectors (see the explicit forms
of vectors {|ψi〉}2N

i=1 up to N = 12 in [80]). [Let us recall
that a particular form of vectors |ψi〉 is important only for
a particular input state �in. If the input state is arbitrary, i.e.,
the domain is S(H⊗N

2 ), then one should not care about the
specific form of EB operations.] The important fact is that

∑
i=1,...,2N OEBψi

= �q=(2N/2+1)−1 is a depolarizing map acting
on N

2 qubits. The possible decomposition reads

� =
(

N

N/2

)−1 {N

2}∑
j={N

2}− 1
2 ( N

N/2)+1

2∑
m=1

×
(
�

[P2
j ]m

q=(2N/2+1)−1 ⊗ Id[P2
j ]{1,2}\m

)
◦ �d (j,m), (13)

where �d (j,m) must satisfy condition (5) for all vectors
{|ψi〉}2N

i=1 and for the corresponding domain of density
operators �in. For computational reasons let us note that
checking the validity of (5) is less time consuming when
we justify the positivity of the Hermitian operator without
revealing its eigenvalues. Namely, the eigenvalues of a d × d

Hermitian matrix X are non-negative if and only if Ck � 0
for k = 1, . . . ,d, where Ck is given by the recurrence relation
Ck = 1

k

∑k
l=1(−1)l−1Ck−l tr[Xl] with initial condition C0 = 1

[82]. We use this technique for N = 6.
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Using diagonal maps �d (j,m) of the form (7) with
the parametrization xi1···iN = fd (#0[il1 · · · ilN/2 ],#0[{i1 · · · iN } \
{il1 · · · ilN/2}]), (il1 · · · ilN/2 ) ∈ [P2

j ]m, we obtain the following
system of equations:

(
N

N/2

)−1 N/2∑
l=0

(
n

N/2 − l

)(
N − n

l

)
fd (l,N − n − l)

(2N/2 + 1)1−δl,N/2

=
{

qn, � = �local
q ,

q1−δn,0 , � = �
global
q ,

n = 0, . . . ,N. (14)

The maximal values of q for which the system has a solution
are presented for various �in in Tables I and II.

E. Channels dissociating genuine entanglement

The elementary blocks of these channels can be obtained
by applying an EB operation on a single qubit [Fig. 3(e)]. We
use the same EB operations as in Sec. VI A. This yields the
decomposition

� = 1

N

N∑
m=1

(
�

[P2
j=m]1

q=1/3 ⊗ Id[P2
j=m]2

)
◦ �e(m), (15)

where the map �e(m) must satisfy (5) for all vectors {|ψi〉}4
i=1

corresponding to a SIC-POVM for a qubit. Using diagonal
maps �e(m) of the form (7) with the parametrization xi1···iN =
fe(#0[im],#0[i1 · · · im−1im+1 · · · iN ]), we find that (15) becomes
a valid equality if

n

3N
fe(0,N − n) + N − n

N
fe(1,N − n − 1)

=
{

qn, � = �local
q ,

q1−δn,0 , � = �
global
q ,

n = 0,1, . . . ,N. (16)

The maximal values of q for which the system has a solution
and (5) is fulfilled are presented for various input states in
Tables I and II.

VII. DISCUSSION

To begin with, the NPT criterion gives a little information
about the multipartite entanglement structure. Indeed, one can
observe in Tables I and II many situations when �[�in] is either
negative under partial transpose but not genuinely entangled,
or positive under partial transpose but not fully separable.
The gap between states �[�in] that are surely not genuinely
entangled and those that are definitely genuinely entangled is
quite narrow for particular input states. This can be treated as an
indication of the efficiency of the rather simple decomposition
(15) involving single-qubit entanglement-breaking operations.

The remarkable fact is that our method enables us to
consider all input states and find channels that transform any
of them to a particular entanglement structure. This is what
we mean by a “typical” behavior. For example, we can detect
channels that annihilate entanglement, for which the output
state is always fully separable whatever the input state is. Note
that the bounds obtained on q for entanglement annihilation
are higher than those that can be found via the condition of
sufficiently small purity tr{(�[�in])2} [83]. Scaling of EA for

2

3

4

0.5 10

2
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4

0.5 10

EBEB EA

N N

qq

)b()a(

FIG. 4. (Color online) Scaling of the entanglement degradation
properties of an N -qubit local depolarizing channel �⊗N

q with
increasing N : (a) entanglement annihilation; (b) dissociation of
genuine entanglement.

the local depolarizing channel is shown in Fig. 4(a). When
N → ∞, the channel �⊗N

q cannot be EA if q > 1√
5

[19];
however, the question of whether EA equals EB still remains
an open problem. On the contrary, from formula (16) one
can see that the genuine entanglement of any input state can
be dissociated by a negligible noise in the limit N → ∞
[Fig. 4(b)].

The dissipative dynamics under consideration can be
described by gradually decreasing the parameter q ∼ e−�t ,
where the dissipation rate � takes, in principle, different values
for local and global noises. For our purposes it is enough to
know that q continuously diminishes from q = 1 to q = 0. For
such types of dissipative dynamics, the state evolution through
the nested sets of Sec. II is irreducible: once the state comes
into a particular “doll” of the structure, it cannot escape it in
the future.

Using the data from Table I, we may conclude that
the dissociation of genuine multiparticle entanglement under
local depolarizing noise starts by detaching a single random
particle [i.e., the state becomes (N − 1)-entangled]. Then the
noise detaches particles one by one, resulting in k-separable
(N − k + 1)-entangled states (k increases with decreasing q).
Indeed, since the noise is local, once a particle is detached
from the entanglement compound, there is no way for it to
rejoin it (Fig. 5). Finally, the noisy evolution makes the state
fully separable.

The analysis of Table II shows that the entanglement disso-
ciation progresses in a different way under global depolarizing
noise: while the beginning stage also implies detaching of a
single random particle from the entanglement compound, in
further dynamics this particle can fuse with another one and
form a two-particle entanglement cluster that is detached from
the main compound (a convex combination of such states). The
process continues until the point when the original compound
is divided into two clusters (2-separable N

2 -entangled state);
then the detachment of particles and their successive fusion
result in the formation of more entanglement clusters of
smaller size (k-separable N

k
-entangled state; k increases with

decreasing q), and so on until full separability (see Fig. 5 for
the case of six qubits).

VIII. SUMMARY

Our study was motivated by the necessity to know the
multiparticle entanglement structure and its vulnerability to

062328-9
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FIG. 5. (Color online) Tracks of the typical entanglement structure dynamics subject to local depolarizing noise (green dotted line) and
global depolarizing noise (purple dash-dotted line) for N -qubit systems: (a) N = 3, (b) N = 4, and (c) N = 6. The state space S(H⊗N

2 ) is
divided into areas of k-separable states (red dashed lines) and r-entangled states (blue solid lines), with representatives of the states being
depicted. Stars on the tracks denote points detected in Sec. VI and listed in Tables I and II.

noises in physical and quantum-informational applications.
We did not restrict ourselves to specific input states and
considered the set of all possible states as well. We found
criteria for maps dissociating entanglement with respect to
a particular partition and developed sufficient conditions
for their reliable detection. Namely, the channel of interest
should adopt a decomposition into (not necessarily completely
positive) linear maps which give rise to the desired form
of the output. One can draw a rough analogy between this
decomposition and the path integral formulation of quantum
mechanics, where the trajectories can be quite nonphysical
but this does not affect the resulting physical evolution. For
local and global depolarizing N -qubit channels we provided a
simple strategy for constructing decompositions that allowed
us to find noise levels guaranteeing the particular form of
entanglement structure. Our decompositions are not optimal
and can in principle be improved by applying modifications
of semidefinite programming [41] and other algorithms [58]
for Choi operators. Nevertheless, our toolbox allowed us to
reveal differences in entanglement structure dynamics under
local and global noises: the particles split one by one from the

entanglement compound in the case of local noise, and tend to
form clusters in the case of global noise. We believe that the
obtained results may be extended to other noise models and
provide additional information about the general rules of the
dynamics of multiparticle entanglement structure.
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[82] I. Bengtsson and K. Życzkowski, Geometry of Quantum

States. An Introduction to Quantum Entanglement (Cambridge
University Press, New York, 2006), Sec. 8.1.

[83] R. Hildebrand, Phys. Rev. A 75, 062330 (2007).

062328-11

http://dx.doi.org/10.1103/PhysRevA.65.052327
http://dx.doi.org/10.1103/PhysRevA.65.052327
http://dx.doi.org/10.1103/PhysRevA.65.052327
http://dx.doi.org/10.1103/PhysRevA.65.052327
http://dx.doi.org/10.1103/PhysRevLett.92.180403
http://dx.doi.org/10.1103/PhysRevLett.92.180403
http://dx.doi.org/10.1103/PhysRevLett.92.180403
http://dx.doi.org/10.1103/PhysRevLett.92.180403
http://dx.doi.org/10.1103/PhysRevA.72.042339
http://dx.doi.org/10.1103/PhysRevA.72.042339
http://dx.doi.org/10.1103/PhysRevA.72.042339
http://dx.doi.org/10.1103/PhysRevA.72.042339
http://dx.doi.org/10.1103/PhysRevA.71.032350
http://dx.doi.org/10.1103/PhysRevA.71.032350
http://dx.doi.org/10.1103/PhysRevA.71.032350
http://dx.doi.org/10.1103/PhysRevA.71.032350
http://dx.doi.org/10.1103/PhysRevA.78.064301
http://dx.doi.org/10.1103/PhysRevA.78.064301
http://dx.doi.org/10.1103/PhysRevA.78.064301
http://dx.doi.org/10.1103/PhysRevA.78.064301
http://dx.doi.org/10.1103/PhysRevLett.100.080501
http://dx.doi.org/10.1103/PhysRevLett.100.080501
http://dx.doi.org/10.1103/PhysRevLett.100.080501
http://dx.doi.org/10.1103/PhysRevLett.100.080501
http://dx.doi.org/10.1103/PhysRevA.82.032317
http://dx.doi.org/10.1103/PhysRevA.82.032317
http://dx.doi.org/10.1103/PhysRevA.82.032317
http://dx.doi.org/10.1103/PhysRevA.82.032317
http://dx.doi.org/10.1103/PhysRevA.79.032322
http://dx.doi.org/10.1103/PhysRevA.79.032322
http://dx.doi.org/10.1103/PhysRevA.79.032322
http://dx.doi.org/10.1103/PhysRevA.79.032322
http://dx.doi.org/10.1103/PhysRevA.79.064305
http://dx.doi.org/10.1103/PhysRevA.79.064305
http://dx.doi.org/10.1103/PhysRevA.79.064305
http://dx.doi.org/10.1103/PhysRevA.79.064305
http://dx.doi.org/10.1103/PhysRevLett.106.110402
http://dx.doi.org/10.1103/PhysRevLett.106.110402
http://dx.doi.org/10.1103/PhysRevLett.106.110402
http://dx.doi.org/10.1103/PhysRevLett.106.110402
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevLett.80.5239
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevLett.93.230501
http://dx.doi.org/10.1103/PhysRevLett.93.230501
http://dx.doi.org/10.1103/PhysRevLett.93.230501
http://dx.doi.org/10.1103/PhysRevLett.93.230501
http://dx.doi.org/10.1088/0305-4470/34/35/305
http://dx.doi.org/10.1088/0305-4470/34/35/305
http://dx.doi.org/10.1088/0305-4470/34/35/305
http://dx.doi.org/10.1088/0305-4470/34/35/305
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.68.042307
http://dx.doi.org/10.1103/PhysRevA.78.060301
http://dx.doi.org/10.1103/PhysRevA.78.060301
http://dx.doi.org/10.1103/PhysRevA.78.060301
http://dx.doi.org/10.1103/PhysRevA.78.060301
http://dx.doi.org/10.1103/PhysRevA.86.022310
http://dx.doi.org/10.1103/PhysRevA.86.022310
http://dx.doi.org/10.1103/PhysRevA.86.022310
http://dx.doi.org/10.1103/PhysRevA.86.022310
http://dx.doi.org/10.1103/PhysRevA.86.050302
http://dx.doi.org/10.1103/PhysRevA.86.050302
http://dx.doi.org/10.1103/PhysRevA.86.050302
http://dx.doi.org/10.1103/PhysRevA.86.050302
http://dx.doi.org/10.1088/1751-8113/45/19/195306
http://dx.doi.org/10.1088/1751-8113/45/19/195306
http://dx.doi.org/10.1088/1751-8113/45/19/195306
http://dx.doi.org/10.1088/1751-8113/45/19/195306
http://dx.doi.org/10.1088/1367-2630/12/5/053002
http://dx.doi.org/10.1088/1367-2630/12/5/053002
http://dx.doi.org/10.1088/1367-2630/12/5/053002
http://dx.doi.org/10.1088/1367-2630/12/5/053002
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevLett.104.210501
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1103/PhysRevA.84.062306
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevLett.106.190502
http://dx.doi.org/10.1103/PhysRevA.88.012305
http://dx.doi.org/10.1103/PhysRevA.88.012305
http://dx.doi.org/10.1103/PhysRevA.88.012305
http://dx.doi.org/10.1103/PhysRevA.88.012305
http://dx.doi.org/10.1103/PhysRevA.88.042328
http://dx.doi.org/10.1103/PhysRevA.88.042328
http://dx.doi.org/10.1103/PhysRevA.88.042328
http://dx.doi.org/10.1103/PhysRevA.88.042328
http://dx.doi.org/10.1103/PhysRevLett.92.087902
http://dx.doi.org/10.1103/PhysRevLett.92.087902
http://dx.doi.org/10.1103/PhysRevLett.92.087902
http://dx.doi.org/10.1103/PhysRevLett.92.087902
http://dx.doi.org/10.1088/0953-8984/21/39/395602
http://dx.doi.org/10.1088/0953-8984/21/39/395602
http://dx.doi.org/10.1088/0953-8984/21/39/395602
http://dx.doi.org/10.1088/0953-8984/21/39/395602
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1088/1367-2630/11/7/073039
http://dx.doi.org/10.1103/PhysRevA.79.012318
http://dx.doi.org/10.1103/PhysRevA.79.012318
http://dx.doi.org/10.1103/PhysRevA.79.012318
http://dx.doi.org/10.1103/PhysRevA.79.012318
http://dx.doi.org/10.1016/j.physleta.2010.08.060
http://dx.doi.org/10.1016/j.physleta.2010.08.060
http://dx.doi.org/10.1016/j.physleta.2010.08.060
http://dx.doi.org/10.1016/j.physleta.2010.08.060
http://dx.doi.org/10.1103/PhysRevA.84.022329
http://dx.doi.org/10.1103/PhysRevA.84.022329
http://dx.doi.org/10.1103/PhysRevA.84.022329
http://dx.doi.org/10.1103/PhysRevA.84.022329
http://dx.doi.org/10.1088/0953-4075/45/3/035501
http://dx.doi.org/10.1088/0953-4075/45/3/035501
http://dx.doi.org/10.1088/0953-4075/45/3/035501
http://dx.doi.org/10.1088/0953-4075/45/3/035501
http://dx.doi.org/10.1103/PhysRevA.86.042324
http://dx.doi.org/10.1103/PhysRevA.86.042324
http://dx.doi.org/10.1103/PhysRevA.86.042324
http://dx.doi.org/10.1103/PhysRevA.86.042324
http://dx.doi.org/10.1103/PhysRevA.87.042310
http://dx.doi.org/10.1103/PhysRevA.87.042310
http://dx.doi.org/10.1103/PhysRevA.87.042310
http://dx.doi.org/10.1103/PhysRevA.87.042310
http://dx.doi.org/10.1103/PhysRevLett.83.3562
http://dx.doi.org/10.1103/PhysRevLett.83.3562
http://dx.doi.org/10.1103/PhysRevLett.83.3562
http://dx.doi.org/10.1103/PhysRevLett.83.3562
http://dx.doi.org/10.1103/PhysRevA.78.032101
http://dx.doi.org/10.1103/PhysRevA.78.032101
http://dx.doi.org/10.1103/PhysRevA.78.032101
http://dx.doi.org/10.1103/PhysRevA.78.032101
http://dx.doi.org/10.1103/PhysRevA.63.020303
http://dx.doi.org/10.1103/PhysRevA.63.020303
http://dx.doi.org/10.1103/PhysRevA.63.020303
http://dx.doi.org/10.1103/PhysRevA.63.020303
http://dx.doi.org/10.1103/PhysRevLett.108.020502
http://dx.doi.org/10.1103/PhysRevLett.108.020502
http://dx.doi.org/10.1103/PhysRevLett.108.020502
http://dx.doi.org/10.1103/PhysRevLett.108.020502
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1103/PhysRevA.86.032307
http://dx.doi.org/10.1103/PhysRevA.86.032307
http://dx.doi.org/10.1103/PhysRevA.86.032307
http://dx.doi.org/10.1103/PhysRevA.86.032307
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1126/science.1145699
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1103/PhysRevLett.105.130501
http://dx.doi.org/10.1103/PhysRevLett.105.130501
http://dx.doi.org/10.1103/PhysRevLett.105.130501
http://dx.doi.org/10.1103/PhysRevLett.105.130501
http://dx.doi.org/10.1103/PhysRevA.72.052326
http://dx.doi.org/10.1103/PhysRevA.72.052326
http://dx.doi.org/10.1103/PhysRevA.72.052326
http://dx.doi.org/10.1103/PhysRevA.72.052326
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1007/s00220-003-0877-6
http://dx.doi.org/10.1103/PhysRevA.63.032306
http://dx.doi.org/10.1103/PhysRevA.63.032306
http://dx.doi.org/10.1103/PhysRevA.63.032306
http://dx.doi.org/10.1103/PhysRevA.63.032306
http://dx.doi.org/10.1103/PhysRevA.56.4452
http://dx.doi.org/10.1103/PhysRevA.56.4452
http://dx.doi.org/10.1103/PhysRevA.56.4452
http://dx.doi.org/10.1103/PhysRevA.56.4452
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1016/S0375-9601(98)00516-7
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1090/S0002-9939-1955-0069403-4
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0024-3795(75)90075-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1016/0034-4877(72)90011-0
http://dx.doi.org/10.1088/0034-4885/75/4/046001
http://dx.doi.org/10.1088/0034-4885/75/4/046001
http://dx.doi.org/10.1088/0034-4885/75/4/046001
http://dx.doi.org/10.1088/0034-4885/75/4/046001
http://dx.doi.org/10.1088/1751-8113/43/27/275306
http://dx.doi.org/10.1088/1751-8113/43/27/275306
http://dx.doi.org/10.1088/1751-8113/43/27/275306
http://dx.doi.org/10.1088/1751-8113/43/27/275306
http://dx.doi.org/10.1134/S0032946008030010
http://dx.doi.org/10.1134/S0032946008030010
http://dx.doi.org/10.1134/S0032946008030010
http://dx.doi.org/10.1134/S0032946008030010
http://dx.doi.org/10.1103/PhysRevA.85.012303
http://dx.doi.org/10.1103/PhysRevA.85.012303
http://dx.doi.org/10.1103/PhysRevA.85.012303
http://dx.doi.org/10.1103/PhysRevA.85.012303
http://dx.doi.org/10.1103/PhysRevA.88.032316
http://dx.doi.org/10.1103/PhysRevA.88.032316
http://dx.doi.org/10.1103/PhysRevA.88.032316
http://dx.doi.org/10.1103/PhysRevA.88.032316
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1016/S0375-9601(01)00142-6
http://dx.doi.org/10.1016/S0375-9601(01)00142-6
http://dx.doi.org/10.1016/S0375-9601(01)00142-6
http://dx.doi.org/10.1016/S0375-9601(01)00142-6
http://dx.doi.org/10.1063/1.3374022
http://dx.doi.org/10.1063/1.3374022
http://dx.doi.org/10.1063/1.3374022
http://dx.doi.org/10.1063/1.3374022
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1103/PhysRevA.75.062330
http://dx.doi.org/10.1103/PhysRevA.75.062330
http://dx.doi.org/10.1103/PhysRevA.75.062330
http://dx.doi.org/10.1103/PhysRevA.75.062330



